ここ数カ月くらい、研究の実験でMahoutのTasteを結構使ってみました。個人的な感想ですが、フレームワークとしては使えるけど、富豪(?)でない人が利用するのは厳しい気がしました。ここでいう富豪とは最新のPCを数十や数百台とか使って問題解決できる人のことを指してます。最新のPCを数台とかで計算するようなときにはTasteの中身の実装は非効率と感じています(富豪でもコストパフォーマンスを気にする人は微妙かもな)。機械学習みたいな、科学技術計算的な問題を解こうとすると、基本は激しいループ処理なのでその中でnew ~とかでインスタンスを作ったり、インスタンスの配列やListやMapなどで何かしだすと終わりません…。MahoutのVectorもベクトルの計算するには便利なのですけど、富豪でないとちょっと厳しい気がしてきています。Javaだと、インスタンスの破棄をGCに期待することになり、メモリは消費されるし、GCスレッドも負荷が高くなるし、とかなりやられました(パラレルGC、CMS、G1とかも試したけど、CMSが一番良かった気がする)。そんなわけで、始めはTasteに乗っかって作っていましたが、最終的にはインターフェースは同じ感じだけど、中身の実装は作りこんでいった感じ(Mahoutが実装したKDDCupDataModelだと10G以上のメモリが必要っぽいけど,実装しなおすと6Gくらいでさくっと扱えるようになったりします)。改善して行った点は、インスタンスの生成やListとかMapの利用とかもできる限りやめて、基本はプリミティブな値やその配列とかでやる感じにしました(Javaっぽくないけど)。そんな感じの改善をしていくことで、数十~数百倍くらいのパフォーマンスが改善できた気がしてます。というわけで、富豪でない私みたいな人用に、プリミティブな配列とかでベクトルや行列の計算ができるようなものを作る必要があるのかな、と考え始めてます…。